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LETTER TO THE EDITOR 

Increased storage capacity for hierarchically structured 
information in a neural network of Ising type 

L B Ioffet, R Kuhn and J Lvan Hemmen 
Sonderforschungsbereich 123 an der Universitat Heidelberg, D-6900 Heidelberg 1, Federal 
Republic of Germany 

Received 10 July 1989 

Abstract. Modelling formal neurons by lsing spins, we describe a simple two-neuron 
interaction which allows optimal storage capacity for hierarchically structured information. 
This takes care both of the low-activity limit in simple, Hopfield-type, networks and of the 
correlations which occur inside the classes of information hierarchies. 

The basic idea [ 13 underlying the extensive recent modelling of neural networks is to 
focus on collective behaviour through the introduction of an energy function, or 
Hamiltonian H N ,  with suitable symmetric couplings J,, = J,E, to simplify the neurons 
by taking them as formal two-state elements, and to let the system perform a downhill 
motion in the (free-) energy landscape associated with H N .  As usual, N denotes the 
size of the system. A pattern can be retrieved if it is near to or coincident with a (local) 
minimum of H N .  In this way the network can function as an auto-associative (content- 
addressable) memory. 

The patterns themselves are specific random configurations (67 ,  1 =G is N } ,  which 
we label by 1 =G p s K where K is the total number of stored patterns. (For hierarchies, 
p is a multi-index.) In Hopfield-type models, the dynamical variables are Ising spins 
S, ,  1 =G i S N ,  and the 67 are independent random variables which take the values +1 
and -1 with probability 1 - p  and p ,  respectively. In the original Hopfield model [l-31, 
p = 0.5 and the fraction of stored patterns a = K / N  is bounded by a,^- 0.14. In 
general, a, = a,( p )  depends on p but is ofthe same order of magnitude [2]. If a =G a,( p ) ,  
then a pattern can be retrieved with relatively small error (a  few per cent) whereas for 
a > a,( p )  no pattern can be retrieved. 

For p = 0.5, and apart from the small errors which occur in the retrieval, each stored 
pattern contains N bits and the maximal amount of information per synapse (storage 
capacity) is a,  bits. In the low-activity limit p + 0, which is what we are interested in 
here, the information content is reduced to a,(p)pllog,pl. If we want this to be 
non-zero as p + 0, then a,( p )  should diverge. However, both the Hebbian prescription 
[l-41 and the non-local quasi-inverse rule [SI give an a , ( p )  of the order of one. So 
in the low-activity limit the storage capacity is bound to vanish. 

The same type of problem occurs in any network that has to store and retrieve 
hierarchically structured information [6-91. The reason is simply that inside each class 
the individual patterns are strongly correlated. 

t Permanent address; Landau Institute for Theoretical Physics, USSR Academy of Sciences, 117940 Moscow. 
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To accommodate a finite amount of information per synapse, it has been suggested 
[lo-121 that a different representation of the neural activity is necessary. Instead of 
Ising spins S, = + 1  one could, for instance, take occupation numbers V, which are 0 
or 1 (V-representation). If one does so, it can indeed be shown [lo, 111 that a,(p) - 
l/plln pI and that the theoretical upper bound ayax = (2plln P I ) - ’  of Gardner [ 131 can 
be saturated. What remains, however, is the intriguing question as to what the interac- 
tion looks like for Ising spins (Gardner’s method did not allow an explicit representa- 
tion) and how in the more general case of hierarchically structured information the 
reduction of internal noise is taken care of. 

Using Ising spins, we present a simple two-neuron interaction that gives the 
appropriate scaling a,( p )  - (plln P I ) - ’  as p + 0. Furthermore, we extend our formalism 
so as to allow hierarchically structured information [6-91. Since the simplest non-trivial 
hierarchy is a set of patterns at low activity, we study this case in some detail. We 
first present a signal-to-noise ratio analysis, then proceed to the calculation of the free 
energy, and finally generalise our results to a hierarchy with several levels. 

Patterns with low activity can be obtained [9] as the second generation in a hierarchy. 
Let f = 1 -2p be the mean value of (t , with p = Prob((t = -1). In general, averages 
over the disorder are denoted by angular brackets. We have ((5- f ) 2 )  = ([(t  - f ) )  = 
1 - 5 = 4p( 1 -p) = 4A0. We now take a ‘progenitor’ to = f and consider the patterns 
,$! as descendants in the sense of Parga and Virasoro [6]: Prob{[y I to} = f( 1 +eo/,$). 
Here Prob{[yI(,} is the conditional probability of getting 6: given to. Then the 
coupling constants are 

1 

where 87 = 5’- f and A is at our disposal. For A = A”, we recover [7-91 a model 
whose retrieval behaviour is just that of the Hopfield model. By varying A one can 
slightly improve [7] a,(p), though never beyond 0.20, so that in the limit p + O  the 
information content per synapse vanishes. To see why this is so physically, we perform 
a signal-to-noise ratio analysis. 

The local field generated by pattern v at site i is 

Here we have put (,!’ = f +  6;. The sum in (2) consists of two parts, to be denoted by 
ff:” and f!2), and represents the noise produced by the other patterns. It has mean 
zero and is taken to be Gaussian. The two terms preceding the sum are deterministic 
and the behaviour of the model would be rather poor as p + 0. One might therefore 
wish to improve this by tuning A 5 Ao. (Note, however, that A,,- p.) We have ( ( f : ’ ) ) 2 )  - 
p2a/A2, ((f~”)’) -p3a/A2, while (f:’y!21) vanishes as N - ,  00. The tuning A = A. would 
leave us with an a,(p) of order one-which is of no help. 

The way out is to eliminate the most dangerous noise term, namely f-f,(”. To this 
end, we add a (non-local) interaction 

Its effect is (i) to cancel f f ! ’ )  and (ii)  to produce an extra -2a(Ao/A)f so that in the 
limit p + 0 the deterministic part of the local field adds to &,U(Ao/A) + f (  1 - 2aA0/A). 
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This suggests that our policy should be to fix y = a A 0 / A  in such a way that 2 y =  1. 
We will see shortly that this is indeed correct. 

We start by introducing the numbers x’ = N-I Z; S r  and the order parameters 

If the system is in the state Si = -$‘, then m = ,$ and m ,  = 1 as N + 00 while m, = 0 for 
p # v. Inserting ( l ) ,  (2) and (3) into the Hamiltonian HN = - 4  Z,,, J,,S,S, and using 
( 4 ) ,  we obtain 

We now select finitely many patterns p whose behaviour we are interested in and 
treat the remaining ones in a replica-symmetric context [2, 141. Since the x u  couple 
to the v-patterns only, we may replace - (4A)- ’  Z, (mx”)’  by - y m 2 .  The free energy 
f ( P )  then turns out to be 

-Pf(p) = -2 P [ l -  y(1 + A - ’ ) ] m 2  - 2 p A 0 ( 2 )  m: 

2 1 -’ [In ( A )  - p  (2) ( q  - m 2 ) A - ’  - $ * ( q  - m 2 ) r (  1 - q )  

+( 5 -&exp (G) In 5 2  cosh { p [ T m + ( : )  P m,6’ 

( 6 )  

where A = [ 1 - P ( A o / A ) (  1 - q ) ] ,  T = 1 - y (  1 + A - ’ )  and r = y ( A o / A ) A - * .  
The m, m,, and q are determined by the following set of fixed-point equations (see 

(7) below) and have to be chosen in such a way that they maximise the right-hand 
side of (6). We have 

(7) 

m = ((tanh { p [ T m  + (2) F m”S” + z J ( q  - m 2 ) r  

m,  = ( ( Z t a n h  { p  [ r m + ( : )  w 
m,Sp + z J ( q - m 2 ) r  

while q = ((tanh2{P[. - .I})) with the same argument as in (7) describes the noise 
produced by the extensively many other patterns. The double angular brackets indicate 
an average over the finitely many 6” and the Gaussian z. Scrutinising the argument 
of the hyperbolic tangents in (7),  one immediately observes the beneficial effects of 
(3). The ‘strength’ of the noise generated by the other patterns, i.e. q, is reduced to 
q - m2.  

At high temperatures, all order parameters vanish. If one insists on m being 1 - 2p, 
one simply adds an extra external field. The low-T behaviour is more interesting. We 
focus our attention on a single pattern p. Let h + = T m + 2 p ( A o / A ) m ,  and h - =  
h+-2 (Ao /A)m, .  Moreover, let a ,  = h,/[2(1 - m 2 ) r ] ” 2 .  In the limit /3 +CO one finds 
q = 1 and 

m=( l -p)er f (a+)+perf (a - )  m, = +[erf( a,) - erf( a- ) ] .  (8) 



L1040 Letter to the Editor 

Good retrieval is guaranteed if and only if a ,  >> 0 and a- << 0. Under these conditions, 
mr = 1 and m ={-as they should. However, this will never happen if r stays away 
from zero since then h ,  and h- have the same sign (Ao-p).  One might therefore think 
that = 0 would do through tuning y.  I t  does not, however. The appropriate tuning 
of y is obtained by noticing that h, and h- should be of the same order as their 
difference, namely 2(Ao/A)mr. Hence we put r = 2( 1 - & ) ( A o / A )  with 0 < E < 1 at our 
disposal. Through this ansatz it can be shown that, as p - 0 ,  a satisfying retrieval 
remains possible as long as CY c a,( p )  - (2plln p i ) - ’ .  Even at criticality, A - 1 and the 
tuning mentioned in the introduction is correct: 2 y  = 1. 

By their very construction, patterns inside a class of a hierarchy [6] are also 
correlated. This correlation is taken care of by a method analogous to the one presented 
above. It is illustrated most coveniently by a two-level hierarchy but it is by no means 
restricted to that case. 

The first generation consists of 6: which are independent and *1 with equal 
probability. Given A, the next generation consists of 6;” which are +,$: with probability 
1 - p  and -6: with probability p .  (This is not a martingale, but all the 6 are equal to 
i l . )  An ansatz a la equation (1) which allows one to store about 0.2N hierarchically 
correlated patterns is [7 ,9]  

Here 8;’. = &r - c” with = (1 - 2p)5; as the conditional expectation of 6;’” given 
6;. We first sum over 1 C p c K 2  and then over 1 C A C K , ,  so that K,,, = K ,  K 2  + K ,  
is the total number of stored patterns and CY = K, , , /N .  

What are the modified coupling constants that take care of the noise produced by 
the built-in correlations? Though we have developed a systematic procedure to derive 
suitable AJ,,, it is simpler, and perhaps more physical, to derive them by analogy to ( 5 ) .  

So what is the gist of the extra terms in ( 5 ) ?  Suppose the system is in the state 
S, = 6:. Then the -mx” in ( 5 )  reduce the noise generated by the other terms with 
v Z p ,  i.e. their influence on the energy surface near p. To wit, 4Aom,-mx”= 
N - ’  E, 8,Y((f - m )  and m = 1 -2p with p + 0. So only at p N  sites do the terms of this 
sum differ appreciately from zero. Since they are randomly fluctuating, their contribu- 
tion is of order m. This gives an extra p which roughly allows for the divergence 
of a , ( p )  as p - I .  Note also that we could have dropped the -(mx”)2. 

For the hierarchy we define the numbers x A r ”  = N-’  C ,  8:”,$‘. The order parameters 
m, and mAr are obtained directly from (4) through the substitution 1 + 6; and 8: + 8:. . 
One easily verifies that 4&171,, -E, m,x”’” does the reduction, provided K ,  << N. This 
we henceforth assume. The full-blown Hamiltonian is 

from which the J ,  follow. Sticking to a single ‘progenitor’ to= 1 ,  one recovers (3)- 
except for the - (mx”)* .  

In the case of finitely many condensed patterns, to be denoted by p and (p, v), 
the fixed-point equations corresponding to (7)  are m, = ((6” tanh(pB))), m,,, = 
(((8@”/4Ao) tanh(PB))), and q = ((tanh2(/3B))), where 
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Also here the highly correlated case ( p + O )  is the most interesting one. One may 
repeat the previous analysis nearly word for word. 

In summary, we have shown how strong correlations in hierarchically structured 
information can be taken care of. The neurons are represented by Ising spins which 
all belong to the same network. The optimal storage capacity c t , ( p )  turns out to be 
(2plln PI)-’. 

LBI thanks the members of the neural networks group of the University of Heidelberg 
for the hospitality extended to him during his stay in Heidelberg, where this work was 
done. All three authors gratefully acknowledge financial support from the Deutsche 
Forschungsgemeinschaft. 
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